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All eight hydroelectric projects on
the lower Snake and Columbia
rivers in the Pacific Northwest

feature bypass facilities that divert out-
migrating salmon and steelhead away
from the turbines and spillbays. Data
from Snake River hydro projects indi-
cate bypass system survival (95.3 to
99.4 percent) is generally comparable to
that of spillbays (92.7 to 100 percent
with flow deflectors and 98.4 to 100
percent without) and greater than that of
turbines (86.5 to 93.4 percent).1 Bypass
systems are of keen interest because
they can reduce both spill and passage-
induced mortality. However, to date

most bypass systems have achieved only
limited and variable success.2,3

The key to good bypass design lies in
understanding and forecasting a fish’s
response to the hydraulic (and some-
times water quality) conditions it en-
counters as it approaches a dam.4 To this
end, we developed a “plug-and-play” or
“hypothesis testing” simulation tool,
called the Numerical Fish SurrogateTM

(NFS). The NFS integrates fish cognition
and perception of hydraulic patterns;
particle tracking; and computational
fluid dynamics (CFD) modeling to accu-
rately decode and forecast fish behavior
and trajectories.

To match the movement and passage
patterns of observed fish, the NFS uses
small-scale individual movements of
virtual fish responding to cues from a
simulated flow field. The NFS then can
be used to forecast the performance of
alternative bypass and guidance strate-
gies, as well as to describe the responses
of fish to alternative project operations.

Developing the tool

The NFS uses the Eulerian-Lagrangian-
agent methodTM (ELAM), which com-
bines: a Eulerian framework governing
the physical, hydrodynamic, and water
quality domains; a Lagrangian frame-
work governing the sensory perception
and movement trajectories of individual
fish; and an agent framework governing
the cognitive domain responsible for
perception, behavior decisions, and
acclimatization.5

The NFS runs on the highly resolved
output of a CFD model, which simulates
the flow field associated with a design or
operational alternative. Then, with en-

coded algorithms based on quantitative
knowledge of fish behavior with relation
to flow fields, the NFS records the pas-
sage of individual virtual fish through the
CFD model. If accurate, detailed, and
coincident data are available on three-
dimensional (3D) fish position and hy-
draulics, the NFS can be used to develop
and test algorithms that relate fish move-
ment to flow field attributes.

The NFS uses only hydrodynamic
cues to elicit fish movement behavior
based on the assumption that, near dams,
hydraulics often dominate other stimuli.
Successful model validation at four
hydroelectric facilities supports this
assumption.5 However, many different
cues (odor, light intensity, and social
interactions among migrants) may influ-
ence fish behavior. Additional cues can
be included in the NFS if their spatial
distribution can be described.

How fish perceive hydraulic
patterns

Fish perceive flow strength and direc-
tion, whole body acceleration, and spa-
tial velocity gradients.6,7,8,9 In addition,
juvenile salmon are sensitive to pres-
sure.10 In the NFS, fish sensory percep-
tion is integrated with a basic concept of
fluvial geomorphology that flow resist-
ance creates flow pattern to produce a
“fish traffic rule.” We call this rule the
strain-velocity-pressure (SVP) hypothe-
sis. It requires three hydrodynamic cues
— flow field distortion, velocity magni-
tude, and hydrostatic pressure.

We describe flow field distortion using
a metric called “total hydraulic strain”
that combines the fluid distortion mecha-
nisms of linear deformation (whose ten-
sor metric components are normal strain
rates), rotation (whose components are
angular velocities), and angular defor-
mation (whose components are half of
the true shearing strain rates). Total
hydraulic strain is largely analogous to
acceleration in steady-state flow, as it is
simply the sum of the absolute values of
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all nine spatial velocity gradients. How-
ever, total hydraulic strain does not dif-
ferentiate between acceleration and
deceleration, which allows us to more
simply separate sub-critical, steady flow
resistance into two categories: friction
and form resistance.

In a simple, straight, uniform chan-
nel, friction resistance produces a flow
pattern in which average velocities are
lowest nearest a friction source (such as
the channel bottom), with zero velocity
occurring at the interface between the
water and the friction source. The low-
est total hydraulic strain occurs furthest
from sources of friction resistance, and
the highest occurs nearest the sources.

Form resistance occurs when objects,
such as rocks, project into the flow field.
As with friction resistance, total hydrau-
lic strain associated with form resistance
increases toward the source. By con-
trast, water velocity increases toward
the source of form resistance because of
local reduction in conveyance area and
increased travel distance of water flow-
ing around an obstruction. For example,
a fish approaching a rock outcrop from
upstream senses increased total hydrau-
lic strain and water velocity until it
encounters solid boundary effects very
close to the obstruction.

By integrating information between
the total hydraulic strain and velocity
fields, fish can differentiate structures
associated with friction or form resist-
ance and create a hydrodynamic “image”

of their surroundings. This image is of
sufficient resolution to guide swim path
selection. As they evolved in free-flowing
rivers, fish learned that hydraulic patterns
in their near-field environment provide
information on the environment beyond
their sensory range. The SVP hypothesis
approximates how migrants select swim
paths that minimize migration time, bio-
energetic cost, and exposure to predators
and objects.

We note that, to maintain neutral buoy-
ancy during depth changes, fish with
swim bladders can alter the amount of
gas in the bladder. The process is ener-
getically cheap but slow.11 Therefore, the
SVP hypothesis characterizes the fish’s
depth changes in terms of its response to
friction and form resistance, limited by
its ability to adjust swim bladder volume,
not its vertical swimming velocity.

Modeling fish response to
hydrodynamic cues

Within the NFS, we relate fish cognition
and movement to hydrodynamic cues
using agent-based modeling concepts.
Agents — independent “operators” that
can move and react with others in a vir-
tual environment — are a mathematical
way of representing animal perception.12

The NFS considers hydrodynamic cues
to be agents that interact with the fish.
Executing the SVP hypothesis as a
behavioral rule requires four agents:
absence of other agents (A0), friction
resistance (A1), form resistance (A2),

and pressure gradient (A3). Fish perceive
agents as events by their hydraulic sig-
natures. Fish perceive friction resistance
agent A1 when total hydraulic strain
exceeds an intensity threshold of k1, and
fish perceive form resistance agent A2

when total hydraulic strain exceeds a
threshold of k2, where k2 is much greater
than k1. Fish perceive pressure gradient
agent A3 when the change in hydrostatic
pressure exceeds a threshold of k3.

Animals do not perceive the intensity
of a stimulus according to the metrics
we use to measure or model them. For
example, the volume control dial on an
audio amplifier might be labeled in
decibels (perceived intensity) instead of
voltage amplification (measured inten-
sity). The decibel scale is often used to
measure sound intensity that, according
to the Weber-Fechner Law, is a good fit
to loudness perception. We assume fish
perceive the intensity of total hydraulic
strain (flow field distortion) at a given
time t, following an analogy to the deci-
bel scale. That is, the fish’s perception
of flow field distortion, I(t), is not linear
with the physically measured or mod-
eled intensity of total hydraulic strain,
S(t). Instead, fish perceive flow field
distortion as varying linearly with the
log transform of total hydraulic strain:

Equation 1:

I(t) = log10 [S(t)/S0]

where:
— I(t) is the total hydraulic strain
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Figure 1: Comparison of observed (measured) and virtual (Numeri-
cal Fish Surrogate or NFS) fish passage proportions show the NFS
successfully forecasts passage. With the behavior rules turned on (at

left), NFS forecasts largely capture the trends in observed passage.
With the behavior rules turned off (at right), the virtual fish do not pro-
vide appreciable information on passage trends at the projects.
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(flow field distortion) as perceived by
the fish;

— S(t) is the total hydraulic strain as
physically measured or modeled and
equals the sum of the absolute values of
all nine spatial velocity gradients; and

— S0 is a reference value to quantify
intensity relative to an arbitrary datum.

The Weber-Fechner Law indicates that
to detect a change in stimulus intensity,
I(t), it must exceed the background inten-
sity to which the animal is acclimated,
Ia(t), by a “just noticeable difference.”
Thus, the fish’s exposure history plays an
important role in determining behavior
response. When a stimulus intensity
exceeds the background level by the “just
noticeable difference,” a detection event
results and the motivation to respond to
agent Ai increases by an increment. The
algorithm for this process is:

Equation 2:

I(t)/Ia(t) � ki

where:

— I(t) is the total hydraulic strain as
perceived by the fish;

— Ia(t) is the perceived background
intensity of total hydraulic strain to
which the fish is acclimated; and

— ki is the threshold level, either k 1

associated with the friction resistance
agent A1 or k2 associated with the form
resistance agent A2.

Equation 2 implies that a larger
change in total hydraulic strain is
needed to detect agent A1 or A2 at higher
background levels than at lower levels.

We characterize the acclimated back-
ground level using an exponentially
weighted moving average (EWMA) of
the fish’s exposure history:

Equation 3:

Ia(t) = (1–mstrain ) � I(t)+mstrain � Ia(t–1)
where:
— Ia(t) is the perceived background

intensity of total hydraulic strain to
which the fish is acclimated; 

— mstrain is an adaptation coefficient

with a value between 0 and 1 that scales
how quickly the fish adapts to new total
hydraulic strain conditions; 

— I(t) is the total hydraulic strain as
perceived by the fish; and

— t is time.
EWMAs have a long history in psy-

chological and signal processing litera-
tures.13,14

Fish may change depth in response
to the friction resistance, form resist-
ance, or pressure gradient agent. In
contrast to the logarithmic scale char-
acterizing total hydraulic strain per-
ception, we assume the fish’s percep-
tion of pressure varies with the linear
difference between its present depth
and acclimated depth. The motivation
to change depth in response to pres-
sure gradient agent A3 increases when
the difference between the perceived
and acclimated depths exceeds a
threshold value of k3. Acclimatization
to new depths (pressures) is calculated
with an EWMA:

Equation 4:

da(t)�(1–mdepth ) � d(t)�mdepth � da(t–1)
mdepth�Cd � mdepth if d(t) � da(t)

mdepth�mdepth if d(t) � da(t)
where:
— da(t) is the depth to which the fish

is acclimated;
— mdepth is an adaptation coefficient

between 0 and 1 that scales how fast or
slow the fish adapts to new depths;

— d(t) is depth; and
— Cd is a coefficient between 0 and 1

acknowledging that filling the swim
bladder to descend is slower than emp-
tying gases to ascend.

The detection of an agent is treated
as a Boolean event, ei(t).15 For example,
ei(t)�0 if the agent stimulus does not
exceed threshold level ki in a time
increment and 1 if it does. This is ex-
pressed as:

Equation 5:

ei(t)�0 if I(t)/Ia(t) � ki

ei(t)�1 if I(t)/Ia(t) � ki

where:
— ei(t) is a Boolean event measure;
— I(t) is the  total hydraulic strain as

perceived by the fish;
— Ia(t) is the perceived background

intensity of total hydraulic strain to
which the fish is acclimated; and

— ki is the threshold level, either k1

associated with the friction resistance
agent A1 or k2 associated with the form
resistance agent A2.

Boolean events allow threshold inten-

Figure 2: Researchers tracked virtual fish movement upstream of the 810-MW Lower Granite
Dam with (top) and without (bottom) consideration of fish behavior. In the top view, fish behav-
ior causes changes in movement. Upstream from the dam, behavior B0 predominates. As the
fish move closer, their behavior, and consequently their movement, changes (to B1, B2, and B3).
This resembles observed fish movement at Lower Granite. In contrast, when behavior is not
considered, virtual fish simply follow the water flow (bottom).



sities of hydrodynamic cues to trigger
fish movement through “motivation” and
also mathematically describe “response
latency” (the time interval between a
stimulus and the response).16,17

However, relating agent detections to
fish responses is not straightforward
because fish simultaneously acquire
many information streams, each of
which may produce a specific behavior.
We use a game theoretic framework to
link agent detection to fish response.15 In
this framework, a fish estimates the
probability of obtaining the intrinsic
utility of a behavior using information
streams acquired by its sensory system.
All behaviors have bioenergetic costs,
so expected utility from behavior is:

Equation 6:

Ui(t)�Pi(t) � ui – Ci(t)

where:
— Ui(t) is the expected utility or

level of motivation for responding to
agent Ai with behavior Bi;

— Pi(t) is the probability of obtain-
ing the utility or benefit associated with
successful implementation of behavior
Bi in response to agent Ai;

— ui is the intrinsic utility or value of
the benefit associated with successful
implementation of behavior Bi relative
to the benefit from alternative behav-
iors; and

— Ci(t) is the bioenergetic cost of
behavior Bi, regardless of its success.

In this framework, a fish updates
probabilities for each behavior at each
time step t and selects the behavior
with the greatest motivation (expected
utility Ui). The probability estimate at
time t depends on the estimate at t-1.
New information available between t-1
and t is summarized using an EWMA,
so the probability of obtaining intrinsic
utility ui is:

Equation 7:

Pi(t)�(1 - mi) � ei(t) � mi � Pi(t-1)
where:
— Pi(t) is the probability of obtain-

ing the utility or benefit associated with
successful implementation of behavior
Bi in response to agent Ai;

— mi is a memory coefficient with a
value between 0 and 1 that determines
how the fish weighs current information
in ei(t) against past information regard-
ing agent Ai embodied in Pi(t-1); and

— ei(t) is the Boolean event measure
indicating the presence or absence of
agent Ai.

Maintaining information across time

using an EWMA produces persistence
in behaviors where fish behavior during
time increment t to t�1 depends on
acclimatization to past conditions. This
is an important feature in modeling ani-
mal movement.18,19

The four agents (A0, A1, A2, and A3)
are associated with four behaviors:
swimming with the flow vector (B0),
swimming toward increasing water
velocity to minimize total hydraulic
strain (B1), swimming toward decreas-
ing water velocity or against the flow
vector to minimize total hydraulic
strain (B2), and swimming toward
acclimated pressure (depth) (B3).
Swimming speed is bounded between
burst speed (about ten body lengths
per second) and nominal cruising
speed (about two body lengths per
second).20 In each time increment, fish
orientation and speed are set by the
threshold triggered behavior Bi plus a
random component.

Incorporating data into the tool

Three sets of data must be integrated to
configure the NFS model for new facili-
ties and species:

1) Behavior: highly resolved time-
and space-accurate 3D positions of indi-
vidual fish movement in a relatively
constant hydraulic field;

2) Passage: accurate exit-specific
passage information of target fish
groups; and

3) CFD model: detailed model simu-
lations that accurately describe flow
field patterns associated with behavior
and passage data.

Behavior data is required for develop-
ment of a movement hypothesis, pas-
sage data is required for model calibra-
tion and validation, and CFD model data
is required for calibration, validation, and
forecasting. Furthermore, CFD model
data must be correctly synchronized
with behavior and passage data to ensure
prototype biological information is cor-

Figure 3: Fish guidance systems at 810-MW Lower Granite Dam include a behavioral guid-
ance structure (BGS) that guides fish to the surface bypass collector (SBC) and occludes them
from the three turbine intakes nearest the shore. Patterns of velocity and total hydraulic strain
in 2000 are illustrated using cross-sections parallel to the dam face at 50-meter intervals (mid-
dle) and a horizontal plan view near the water surface (bottom).
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rectly matched to project operation. 

Model application

NFS algorithms and the SVP hypothesis
were developed and calibrated using
acoustic-tag telemetry and passage data
from a single structural/operational
configuration at 810-MW Lower Gran-
ite Dam. Then, the NFS was validated
against 19 structural/operational con-
figurations — 12 at Lower Granite,
two at 603-MW Ice Harbor, and five at
1,038-MW Wanapum Dam.5

We evaluate NFS performance using
five metrics:

1) Ability to capture trends in
measured passage at multiple hydro
projects. Linear regression of meas-
ured vs. forecasted passage shows the
NFS successfully hindcasts passage
for 23 configurations, which includes
the 20 mentioned above and three new
configurations at 1,812.8-MW The
Dalles Dam. (See Figure 1.) Mean
slopes/r-squares for the 23 configura-
tions are 0.90/0.82 for the bypass,
0.78/0.80 for the spillway, and 0.67/0.43
for the turbine passage routes.21 Mean
slopes/r-squares of 1.0 are optimum,
while r-square values above 0.65 are
considered useful for decision-making.22

For comparison, mean slope/r-square
values from the original calibration/vali-
dation of 20 configurations were
0.74/0.78, 0.77/0.89, and 0.82/ 0.65,
respectively.5

2) Ability to forecast passage better
than passive particles (dye in a physical
model). (See Figure 2.) Colored dye
often is used in combination with phys-
ical models during project planning to
gauge plausible fish movement and pas-

sage. Passive particle tracks in a CFD
model are analogous to dye streaks in a
physical model. Within the NFS, virtual
fish become passive particles when the
behavior rules are “turned off.”All NFS
forecasts with the behavior rules turned
off result in passage forecasts substan-
tially less than the 0.65 r-square thresh-
old. In comparison, almost all “rules
on” forecasts produce r-squares above
this threshold. (See Figure 1.)

3) Ability to correctly rank alterna-
tives by passage performance. The NFS
forecasts generally match measured
rankings of configurations as top-, mod-
erate-, and low-performing, using the
metric of passage per unit of CFD mod-
eled flow for the bypass, spillway, and
turbines.5 By comparison, rankings based
on passive particles are poor.

4) Ability to explain performance of
individual bypass and guidance struc-
tures. The NFS explains the reasons
behind performance of several signifi-
cant hydraulic structures, such as The
Dalles Dam sluice and occlusion plates;
the Lower Granite removable spillway
weir (RSW), behavioral guidance struc-
ture (BGS), surface bypass collector
(SBC), and trash boom; and the Wana-
pum top spill bulkhead and sluice.21

5) Ability of NFS to replicate pre-
dominant 3D movement patterns of in-
dividually tagged fish. Movement pat-
terns of individual virtual fish generally
match the predominant patterns of indi-
vidual acoustically tagged fish encoun-
tering similar hydraulic features. This
metric is critical because total passage is
the sum of individual behaviors and can-
not be accurately forecast unless individ-
ual behavior is captured.

Both the trash boom and SBC at Lower
Granite exhibit unique hydraulics (veloc-
ity and total hydraulic strain). (See Figure
3.) These hydraulics are either friction or
form resistance.

Examples illustrate the match of NFS
virtual and real fish behavior at the trash
boom and SBC at Lower Granite. In the
first example, the NFS duplicates the
trash boom-following behavior of real
fish. (See Figure 4.) This is depicted in a
100-second sequence beginning at 2,076
seconds. (See Figure 5.) The fish first
detects the strain created by the trash
boom at 2,120 seconds, when the per-
ceived change (i.e., the just noticeable
difference) in strain exceeds threshold
k1, which is the level the fish associates
with friction resistance (A1). During the
time the threshold k1 is exceeded, the
resulting events e1(t) identifying agent
A1 increase the expected utility U1 (yel-
low utility line in Figure 5), which is the
motivation to respond to agent A1 with
behavior B1. After eight seconds, utility
U1 exceeds U0 and the fish switches from
swimming with the flow (B0) to swim-
ming toward increasing water velocity
(B1) to reduce strain exposure. This de-
lay between agent identification and
response is the response latency.17 The
net result is that the fish breaks off from
the flow and follows the trash boom
toward the dam. Because the boom’s
effect on the flow field dissipates with
depth, neither deeper-swimming virtual
nor real fish respond to the boom.5

In the second example, the NFS
duplicates fish milling between the SBC
and trash boom, depicted at between
2,920 and 3,200 seconds. (See Figure
5.) In the high-energy SBC environ-
ment, the virtual fish’s perceived change
in strain exceeds k2 at 2,928 seconds.
This signals the presence of agent A2,
and the resulting events e2(t) increase
utility U2. After a 50-second latency, U2

exceeds U1 and the virtual fish switches
to swimming upstream (B2) to reduce
strain exposure. Even though strain
diminishes as the fish moves away from
the SBC, the fish continues swimming
upstream because of response latency
(i.e., although decreasing, the utility U2

of behavior B2 still exceeds the utility U1

of behavior B1). At 3,182 seconds, the
fish swims past the trash boom, the per-
ceived change in strain drops precipi-
tously, events e1(t) and e2(t) stop, and
utilities U1 and U2 decline. Eventually,
the utility drops below U0 and the fish
resumes swimming with the flow (B0).

This cycle between the three behav-

Figure 4: Real, acoustically tagged fish (at left) and virtual fish (at right) have similar re-
sponses to the trash boom at the 810-MW Lower Granite Dam. When both the real and virtual
fish pass near the boom, they divert from following the flow and instead follow the boom toward
the removable spillway weir.



iors produces milling between the trash
boom and SBC. However, because the
acclimated strain, Ia(t), increases with
each visit to the SBC, the milling is
eventually disrupted when the perceived
change in strain at the SBC entrance
does not exceed k2. At this time, the fish
either swims with the flow (B 0) or into
increasing water velocity (B1). With
either action, the fish enters the SBC.5

Model assessment

Fish guidance and bypass structure de-
signs are based on hydraulic information
from physical and computational models,
patterns derived from statistical analyses,
and the experience and judgment of engi-
neers and biologists. The NFS is de-
signed to supplement these approaches
by adding unique capabilities to guidance
and bypass efficiency forecasting.23

First, the NFS uses velocity and dis-
tortion field information (approximated
by total hydraulic strain) to characterize
the hydrodynamic cues fish use. Second,
the NFS simulates how fish perceive and
respond to the hydraulic regime by using
response latencies and adaptive behav-
iors observed in laboratories. The SVP
hypothesis indicates that regional bypass
design criteria based on average hydrau-
lic conditions and velocities will be inef-
fective. Fish respond and adapt to
hydraulic gradients, not absolute veloci-
ties. Thus, systems designed on average
conditions cannot address fish ex-
perience and resulting adaptation.

Data quality and project complexity
varied substantially across the 23 sce-
narios studied and likely influenced
accuracy of individual project and com-
bined forecasts. Future NFS use will be
most efficient when: calibration/valida-
tion data exhibit a high degree of syn-
chrony between project operation, CFD
model scenario, and fish passage infor-
mation; and the CFD models are cali-
brated and benchmarked to ensure the
meshes do not adversely affect simu-
lated hydraulic gradients.

Our analysis reveals that NFS accu-
racy is highest for forecasting spillway
passage, intermediate for bypass pas-
sage, and lowest for turbine passage.
This order likely reflects variability in
outlet flows during field data collection:
spillway operations were held constant
during studies, but turbine operation
varied in response to electrical demand
and maintenance requirements. Bypass
system performance is affected by tur-
bine operations because these systems
often are located near the powerhouse.

A major component of NFS error
likely results from the inability of the
steady-state CFD model to capture the
time-varying turbine operations under
which fish passage data were collected.
For example, ten of the 23 configura-
tions were associated with lumped pas-
sage data (passage for individual tur-
bines or spillbays was not separated).
For the other 13 configurations, passage
estimates were provided for individual
turbines and spillbays. For 12 of these
13 configurations, fish passage was
measured through turbines or spillbays
that are closed in the CFD model (mean
4.2 percent; range 0.03 to 11.31 per-
cent). We do not know if turbine opera-
tion was held constant during collection
of the lumped passage estimates.

Besides synchronization error, well-
executed fixed-location hydroacoustic
monitoring studies have errors of about
�5 percent of actual passage. Increased
synchronization during passage moni-
toring and improved accuracy of fixed-
location hydroacoustics will provide
higher-resolution data that will increase
the accuracy of the NFS.

Species-specific NFS versions are
possible, but data are insufficient to rig-
orously develop, calibrate, and validate
a model. Also, development of a
species-specific NFS likely will require
increased resolution of CFD model
meshes; an evaluation of the steady-
state assumption used in the present for-

mulation of the NFS; and increased
efforts to synchronize project operation,
CFD modeling, and fish positional and
passage data collection.

The distortion field is easier to affect
than bulk flow patterns. Our research
indicates that relatively small structures
— such as trash booms — can substan-
tially affect fish behavior by affecting
the distortion field. This finding can
help identify innovative new cost-effec-
tive guidance and bypass technologies
that take advantage of flow field distor-
tion to adjust the fish distribution. ■
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Figure 5: Tracks of virtual fish (yellow) resemble the trash boom-following and milling behavior
of real fish (green). Second-by-second changes in the perceived change in strain and depth
drive the utility (i.e., motivation) for four behaviors, which act in concert to explain why fish fol-
low the trash boom (A) and mill in front of the bypass collector (B) before passing downstream.
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